Forest Health

Andrew B. Perleberg
WSU Extension Forester
(509) 630-4217
andyp@wsu.edu

Resource guide

Station Bulletin No. 76 May, 2011

Idaho Forest, Wildlife and Range Experiment Station Moscow, Idaho

Director Kurt S. Pregitzer

Google

these 4 words:

after the burn Idaho

			CRO	WN SCC	RCHVC	LUME (F	PERCENT	Γ)		
DBH	10	20	30	40	50	60	70	80	90	100
5	49%	53%	60%	68%	78%	86%	93%	97%	99%	99%
6	42%	46%	53%	62%	72%	83%	90%	95%	98%	99%
7	36%	40%	46%	55%	67%	78%	88%	94%	98%	99%
8	30%	34%	40%	49%	61%	74%	85%	93%	97%	99%
9	25%	28%	34%	43%	55%	69%	82%	91%	96%	99%
10	21%	24%	29%	37%	49%	64%	78%	89%	95%	98%
12	15%	17%	21%	28%	39%	53%	69%	84%	93%	97%
14	11%	12%	10%	21%	30%	43%	61%	77%	90%	96%
16	8%	9%	7%	16%	23%	35%	52%	71%	86%	94%
18	6%	7%	6%	12%	18%	29%	45%	65%	82%	93%
20	5%	5%	4%	10%	15%	24%	39%	59%	78%	91%
22	4%	4%	4%	8%	13%	21%	34%	54%	74%	89%
24	3%	4%	3%	7%	11%	18%	31%	50%	71%	87%
26	3%	3%	3%	6%	10%	16%	28%	47%	69%	86%
28	3%	3%	3%	6%	9%	15%	27%	45%	67%	85%
30	3%	3%	3%	6%	9%	15%	26%	44%	67%	85%

Sources/Notes:Table developed by David C. Powell, Forest Silviculturist, Umatilla National Forest, Pendleton, OR. These values are probabilities, expressed as a percent, of ponderosa pines of various diameters being killed by fire. They are based on an equation from Reinhardt and Ryan (1989) and a bark thickness factor from Keane et al. (1989). See Steele et al. (1996) for a description of the calculation methodology. White values on a blue background denote combinations of crown scorch and DBH with a mortality probability ≥ 50%.

University of Idaho Extension

Common post-fire questions:

Will trees die from fire injury?
Will there be a bark beetle
outbreak?
How long will the wood be
salvageable?

Crown Scorch

40% Scorch

DBH = 20"

70% Scorch

DBH = 14"

WSU

Table 2: Probability of fire-induced mortality for ponderosa pine.

			CRO	WN SCO	RCHVC	DLUME (F	PERCENT	Γ)		
DBH	10	20	30	40	50	60	70	80	90	100
5	49%	53%	60%	68%	78%	86%	93%	97%	99%	99%
6	42%	46%	53%	62%	72%	83%	90%	95%	98%	99%
7	36%	40%	46%	55%	67%	78%	88%	94%	98%	99%
8	30%	34%	40%	49%	61%	74%	85%	93%	97%	99%
9	25%	28%	34%	43%	55%	69%	82%	91%	96%	99%
10	21%	24%	29%	37%	49%	64%	78%	89%	95%	98%
12	15%	17%	21%	28%	39%	53%	69%	84%	93%	97%
14	11%	12%	10%	21%	30%	43%	61%	77%	90%	96%
16	8%	9%	7%	16%	23%	35%	52%	71%	86%	94%
18	6%	7%	6%	12%	18%	29%	45%	65%	82%	93%
20	5%	5%	4%	10%	15%	24%	39%	59%	78%	91%
22	4%	4%	4%	8%	13%	21%	34%	54%	74%	89%
24	3%	4%	3%	7%	11%	18%	31%	50%	71%	87%
26	3%	3%	3%	6%	10%	16%	28%	47%	69%	86%
28	3%	3%	3%	6%	9%	15%	27%	45%	67%	85%
30	3%	3%	3%	6%	9%	15%	26%	44%	67%	85%

Sources/Notes: Table developed by David C. Powell, Forest Silviculturist, Umatilla National Forest, Pendleton, OR. These values are probabilities, expressed as a percent, of ponderosa pines of various diameters being killed by fire. They are based on an equation from Reinhardt and Ryan (1989) and a bark thickness factor from Keane et al. (1989). See Steele et al. (1996) for a description of the calculation methodology. White values on a blue background denote combinations of crown scorch and DBH with a mortality probability ≥ 50%.

Major Factors Influencing Fire Injury

- Season wildfire occurred
- Pre-fire site quality
- Amount of woody debris

How were trees injured?

- Foliage consumption
- Needle set
- Crown scorch volume
- Stem char

Species of tree
Thick/thin barked
Age

Intensity

Duration

Direct/ Indirect effects (insects, disease, drought, prior health and vigor)

Dwarf mistletoe infected

Sensitivity to fire injury varies by tree species and size and vigor

Thin bark ← more sensitive ← Thick bark young trees, grand fir, Douglas-fir, ponderosa pine

Small buds ← more sensitive ← Large buds

Douglas-fir ponderosa pine

Poor health ← more sensitive ← Good health
Small % live crown (desiccation vs scorch)
Small recent diameter growth

Desiccation vs. Scorch are sometimes indistinguishable. "Consumption" = 100% kill

Fire resistant species more commonly analyzed by crown consumption

dried needles and branches
Ponderosa Pine/ Larch/ Western White Pine

Crown scorch most commonly used for analyzing Douglas-fir and other true firs

Some trees such as aspen have dormant buds and will favorably respond to fire disturbance

Needle set should be treated like consumption

• Foliage consumption

Needle Set

Crown Scorch

40% Scorch

DBH = 20"

70% Scorch

DBH = 14"

WSU

Table 2: Probability of fire-induced mortality for ponderosa pine.

			CRO	WN SCO	RCHVC	DLUME (F	PERCENT	Γ)		
DBH	10	20	30	40	50	60	70	80	90	100
5	49%	53%	60%	68%	78%	86%	93%	97%	99%	99%
6	42%	46%	53%	62%	72%	83%	90%	95%	98%	99%
7	36%	40%	46%	55%	67%	78%	88%	94%	98%	99%
8	30%	34%	40%	49%	61%	74%	85%	93%	97%	99%
9	25%	28%	34%	43%	55%	69%	82%	91%	96%	99%
10	21%	24%	29%	37%	49%	64%	78%	89%	95%	98%
12	15%	17%	21%	28%	39%	53%	69%	84%	93%	97%
14	11%	12%	10%	21%	30%	43%	61%	77%	90%	96%
16	8%	9%	7%	16%	23%	35%	52%	71%	86%	94%
18	6%	7%	6%	12%	18%	29%	45%	65%	82%	93%
20	5%	5%	4%	10%	15%	24%	39%	59%	78%	91%
22	4%	4%	4%	8%	13%	21%	34%	54%	74%	89%
24	3%	4%	3%	7%	11%	18%	31%	50%	71%	87%
26	3%	3%	3%	6%	10%	16%	28%	47%	69%	86%
28	3%	3%	3%	6%	9%	15%	27%	45%	67%	85%
30	3%	3%	3%	6%	9%	15%	26%	44%	67%	85%

Sources/Notes: Table developed by David C. Powell, Forest Silviculturist, Umatilla National Forest, Pendleton, OR. These values are probabilities, expressed as a percent, of ponderosa pines of various diameters being killed by fire. They are based on an equation from Reinhardt and Ryan (1989) and a bark thickness factor from Keane et al. (1989). See Steele et al. (1996) for a description of the calculation methodology. White values on a blue background denote combinations of crown scorch and DBH with a mortality probability ≥ 50%.

Did the buds survive?

Douglas-fir buds (smallish) less;

ponderosa pine more tolerant

Post-fire expectations

Serotiny

Soil-stored seeds

Hard seededness

Post-fire expectations

Wildlife Habitat Modifications

Invertebrates

Ken Bevis Stewardship Wildlife Biologist (360) 489-4802

Pulse – disturbances in streams

- increased stream flow
- increased temperatures
- increased nutrient and sediment transport possibly increased large woody debris potential for bank and channel erosion

Tend to be short duration

Water repellency and increased hydrophobia – potential for increased surface erosion and mass wasting (debris avalanches, debris flows, and torrents)

Fish come back relatively quickly so long as habitat is accessible

Management

Salvage Harvest

Bark Beetles

Fungi

Weather Checking

Reforestation

Afforestation

Natural Regeneration

Artificial Regeneration

Bareroot stock

Plug, or container grown

Site prep

Planting

Maintenance

Competing vegetation Weeds

CALL US!!

Silvicultural Contractors Loggers Consulting Foresters Other

We're from the government and we REALLY ARE here to help

Many different insect species use fire killed/injured trees

- Important ecological roles
- Biggest impacts to forest managers:
 - bark beetles killing live trees
 - associatedbluestain
 - damage to wood products

Will there be a bark beetle outbreak?

 Phloem needs to be fresh (AKA not cooked dry) - limited bark char

THIS NOT THIS

Severe Burns

- Few severely burned trees will be infested
 - unsuitable habitat

 Look for trees that have little apparent bole or crown damage, but may be completely girdled at the root collar

Moderate Burns

 Greatest risk of bark beetle infestation

Will there be a bark beetle outbreak?

- Needs to be sizable bark beetle population nearby
- Less likely after late season fires (late August and after)

 Mountain pine beetle: hosts – all pines

 Western pine beetle: host – ponderosa pine

 Red turpentine beetle: hosts – all pines

 Fir Engraver: hosts – grand fir

Pine engraver:
 hosts – all pines

Douglas-fir beetle:
 hosts – Douglas-fir, downed
 western larch

Mountain Pine Beetle (Dendroctonus ponderosae)

- Active in >8 inch diameter lodgepole and pole sized low-vigor ponderosa
- Normally breeds in stressed, injured, diseased trees resulting in scattered mortality
- Outbreak populations kill apparently healthy trees over extensive areas

Table 6: Probability of fire-induced mortality for lodgepole pine.

#375-FY407-6-0	CROWN SCORCH VOLUME (PERCENT)									
DBH	10	20	30	40	50	60	70	80	90	100
5	77%	79%	83%	88%	92%	96%	98%	99%	100%	100%
6	75%	78%	82%	87%	92%	95%	98%	99%	100%	100%
7	74%	77%	81%	86%	91%	95%	97%	99%	100%	100%
8	73%	76%	80%	86%	91%	95%	97%	99%	99%	100%
9	72%	75%	79%	85%	90%	94%	97%	99%	99%	100%
10	70%	74%	78%	84%	90%	94%	97%	99%	99%	100%
12	68%	71%	76%	82%	88%	93%	96%	98%	99%	100%
14	65%	68%	74%	80%	87%	92%	96%	98%	99%	100%
16	62%	66%	71%	78%	85%	91%	96%	98%	99%	100%
18	59%	63%	69%	76%	84%	90%	95%	98%	99%	100%
20	56%	60%	66%	74%	82%	89%	94%	97%	99%	100%
22	53%	57%	64%	72%	80%	88%	94%	97%	99%	100%
24	50%	54%	61%	69%	79%	87%	93%	97%	99%	100%
26	48%	52%	58%	67%	77%	86%	92%	96%	98%	99%
28	45%	49%	55%	64%	75%	84%	91%	96%	98%	99%
30	42%	46%	53%	62%	72%	83%	90%	95%	98%	99%

Sources/Notes: Table developed by David C. Powell, Forest Silviculturist, Umatilla National Forest, Pendleton, OR. These values are probabilities, expressed as a percent, of lodgepole pines of various diameters being killed by fire. They are based on an equation from Reinhardt and Ryan (1989) and a bark thickness factor from Keane et al. (1989). See Steele et al. (1996) for a description of the calculation methodology. White values on a blue background denote combinations of crown scorch and DBH with a mortality probability ≥ 50%.

Western Pine Beetle (Dendroctonus brevicomis)

- Prefers mature or weakened trees
- Outbreaks follow drought
- Overlapping broods, 1-2 generations per year
- Commonly group kill

stry

Red Turpentine Beetle

(Dendroctonus valens) Most pines are hosts

- Usually attack bottom 6 ft
- Common on stressed or fire scorched trees, stumps
- "Cave" larval gallery
- Forms large, 'grainy' pitch tubes near the base
- Considered a "secondary" bark beetle

Post-fire management of pine bark beetles

- Salvage fire damaged and infested pines before summer flight (consider season and severity of fire)
- Manage stand density to increase tree vigor
- Can use pesticides to prevent attacks on high value trees

Fir Engraver (Scolytus ventralis)

• Host: True fir

 Attacks weakened, dying or recently killed fir trees

Salvage fire damage trees

Pine Engraver (*Ips pini*)

- Breed in fresh dead pine > 3 inches diameter (preferred over live trees)
- Several generations per year
- Large amounts of fire damaged trees can rapidly increase populations which can attack nearby live pine (usually small trees or tops of larger trees)

Pine Engraver Management Options

- Salvage fire damage
- Don't leave fresh breeding material >3" diameter from Jan to July
- Pile and burn before flight (Mar April)

Pine slash management options:

- Direct removal
- Chipping (remove or scatter)
- Lop and scatter in open areas – done in late summer/fall
- Don't stack wood near live trees
- Outbreaks typically collapse after one year (high overwintering mortality, less host material)

Douglas-fir Beetle (Dendroctonus pseudotsugae)

- Hosts: Douglas-fir, downed green western larch
- Breeds in felled, injured or diseased trees, resulting in widely scattered mortality
- Prefers >14 inch DBH trees
- Epidemic populations kill apparently healthy trees over extensive areas
- Commonly group kill

Post-fire Douglas-fir beetle management

- DF less than 10" DBH is at low risk for outbreak
- After early season fire: salvage infested trees before spring flight
- After late season fire: salvage damaged trees before two springs pass

Verbenon & MCH (anti-aggregation pheromone)

- Used to prevent Pine & Douglas-fir beetle attacks
- Best for high value stands campgrounds, timber sale, old growth
- Can be applied by hand (bubble caps); from the air (flakes); or a goo
- Must be applied before April flight

Three families of wood borers

Metallic wood borers Flat-headed wood borers Family Buprestidae

Long-horned wood borers
Round-headed wood borers
Family Cerambycidae

Woodwasps
Other colorful names
Family Siricidae

Bark beetle larva

How long will the wood be salvageable?

 Some wood borers attack before fire is out

"Fire bug"
(Melanophila acuminata) has infrared sensors

 Wood borers may tunnel in sapwood within a few months of fire

- Ambrosia beetles can enter sapwood immediately after the fire and into the first year (don't use phloem)
- Require moisture

- In trees attacked by bark beetles and/ or wood borers, bluestain can appear within weeks
- Bluestain growth slows later in season
- Bark beetles & wood borers can't use severely burned trees, so this limits bluestain in these trees
- Salvage appearance-grade wood within 1-2 months

- Decay fungi damage sapwood within 6 months and heartwood starting second year
- Salvage for dimensional grade within 6 months

Decay rate of fire killed Douglas-fir

Summary

- How long will the wood be salvageable?
 - Pine staining and wood boring insect activity start right away
 - Prioritize salvage for high value products
 - Manage to optimize tree vigor and meet long term

objectives

– Leave a few wildlife trees per acre!

Acknowledgements

- Melissa Fischer, Karen Ripley, Glenn Kohler, Yvonne Barkely
- Bugwood Network (www.bugwood.org)
- Forestry Images

Thank you for your attention!

Andrew B. Perleberg
WSU Extension Forester
(509) 630-4217
andyp@wsu.edu

